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Motivation

Tremendous amount of theoretical and Implementation work

Tableaux, Automata, SMT, Resolution ⋯

FACT++, Pellet, RACER, HermiT ⋯

Comprehensive sets of optimization algorithms and techniques

Efficient reasoning is the gap

Two sources of complexity: OR-Branching, AND-Branching
An active area of research

ALC is the expressive DL with the simplest syntax which well
addresses the two sources of complexity
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Related Work

Tableaux Based Algorithms

De-facto standard algorithm
Simple problems optimal and difficult problems suboptimal

Tableaux with global cache

Simple problem suboptimal and difficult problem optimal

Automata based algorithm

EXPTime, EXPSpace

SMT based solution

Early stage in DL
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ALC DL Syntax and Semantics

Attributive Concept Language with Complements

Signature Σ = (NR ,NC ,NI )

Concepts C ,D ∶∶= ⊺ ∣ � ∣ A ∣ ¬C ∣ C ⊓D ∣ C ⊔D ∣ ∀R.C ∣ ∃R.C

Key Definitions

Atomic concept, Atomic literal, Modal Atomic Concept
Axiom(C ⊑ D,C ≡ D) and TBox denoted as T
Assertion (a ∶ C ,R(a,b)) and ABox denoted as A
A Knowledge Base(KB) is a tuple K = {A,T }

Interpretation I = (∆I ,.I ) where ∆I is a non-empty set and
.I is a mapping RI ⊆ ∆I ×∆I ;CI ⊆ ∆I ;dI ∈ ∆I .

An interpretation I is called a model of K if it satisfies every
assertions in A and validates every axiom in T .

K is satisfiable if it has at least one model.

All DL reasoning problems P-reducable to K SAT problem.
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Normalization

Description Logic Normal Form (DLNF)

d ∶ ⊔i
1 Ai

A ⊑ ⊔
i
1 Bi

A1 ⊑ ∃R.B
A2 ⊑ ∀R.B
where d is an individual and Ai ,Bi are atomic literals. A1,A2

are called prefixes.

Proposition
For every KB K, one can compute in linear time a KB K

′

in
DLNF such that K is satisfiable iff K

′

is satisfiable
(equi-satisfiable)
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Normalization (Continued)

De Morgan’s Laws

⋯

Simplification Rules

C ⊓ C = C
¬¬C = C⋯

Normalization Rules

a ∶ C ⇒ {a ∶ X ,X ⊑ C} where X ∉ NC of K
′

A ⊑ C ⊔D ⇒ {A ⊑ X ⊔Y ,X ⊑ C ,Y ⊑ D} where X ,Y ∉ NC of

K
′

A ⊑ ∃R.C ⇒ {A ⊑ ∃R.X ,X ⊑ C} where X ∉ NC of K
′

A ⊑ ∀R.C ⇒ {A ⊑ ∀R.X ,X ⊑ C} where X ∉ NC of K
′

A ⊑ C ⊓D ⇒ {A ⊑ C ,A ⊑ D}
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Local Learning

OR-branching in DL (Tableau ⊔-rule/β-rule):
a∶(C⊔D)∈K

K⋃(a∶C) ∣ K⋃(a∶D)
Mathematically correct
Workable for general KB
Practically inefficient

K is copied to every branch
Worst case up to O(n2n

) while the ⊔ is NP per se.

Solution in the literature

Open research topic
DPLL with conflict-driven learning with high-performance in
reality O(2n)

No state-of-the-art DL reasoners deal with ⊔ efficiently so far
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Local Learning (Continued)

Our solution

Group all assertions in a DLNF K by individual (Node)
Satisfiability of each node becomes SAT w.r.t. a CNF
DPLL on CNF with conflict-driven learning (local learning),
two-watched-literals etc.
A node model in the form of d ∶ {B1,B2....Bi} where Bi is an
atomic literal

Local learning is out of the scope in DL research
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Example

A,B,C ,D,E ,X ∈ NC and
R ∈ NR of K

1 a ∶ X

2 B ⊑ A

3 C ⊑ A ⊔B

4 A ⊑ D

5 A ⊑ E

6 D ⊑ ∃R.X

7 E ⊑ ∀R.¬X

8 ⊺ ⊑ A ⊔B ⊔ C

Proof:

Node Model

a ∶ (
X
A ⊔B ⊔ C

) ( 0 ∶ X )

a ∶

⎛
⎜
⎜
⎜
⎝

X
A ⊔B ⊔ C
D,E
∀R.¬X ,∃R.X

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 ∶ X
1 ∶ A,D,E ,
∀R.¬X ,∃R.X
R(a,b)

⎞
⎟
⎟
⎟
⎠
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Example(Continued)

Node Model

b ∶
⎛
⎜
⎝

X
¬X
A ⊔B ⊔ C

⎞
⎟
⎠
( 0 ∶ )

K = K⋃{⊺ ⊑ ¬D ⊔ ¬E}

Node Model

a ∶

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X
A ⊔B ⊔ C
¬D ⊔ ¬E
D,E
∀R.¬X ,∃R.X

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎝

0 ∶ X
1 ∶ A,D,E ,
∀R.¬X ,∃R.X

⎞
⎟
⎠

Node Model

a ∶
⎛
⎜
⎝

X
A ⊔B ⊔ C
¬D ⊔ ¬E

⎞
⎟
⎠
( 0 ∶ X ,¬A )

⋯⋯
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Global Learning

Restrictions of the node model:
1

a∶B∈Ma,(B⊑C)∈T
A⋃{a∶C}

, a∶B∈Ma,(⊺⊑C)∈T
A⋃{a∶C}

(unfolding-rule)

2 a∶∃R.C∈Ma

∆⋃{b},A⋃{R(a,b),b∶C}
(∃-rule)

a is a parent node of b; C is an label of b; R is an edge from a
to b.

3 a∶∀R.C∈Ma

R(a,b)∈A→A⋃{b∶C}
(∀-rule)

C is a universal label of node b; empty label node is called
root.
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Global Learning (Continued)

Interesting facts:

All nodes have to be satisifiable at the same time if K is
satisfiable (AND-node).
Due to unfolding-rule, node content is dynamic at run-time,
but satisfiability is determined by its label set.
Label set is uniquely determined by its prefix set which is a
subset of its parent’s node model.

Globle learning

UNSAT-learning
Unknown-learning (remembering)
SAT-learning (remembering)
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Forgetting

Forgetting proposition. Let K a KB and φ a formula, and
K
′

= K ∖ {φ}. If K
′

⊧ φ, then K and K
′

are equisatisfiable.

Forgetting ensures practical tractability.

Methods of forgetting

FIFO
Heuristic
Advanced algorithms
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Experimental Results1

L-N L-S L-U LIGHT HermiT Pellet Fact++ Racer
galen2s 0.16 0.15 0.16 0.15 1.3 1.4 0.46 1.9
JNH16u 0.07 0.06 0.06 0.07 237.4 452.3 MO 15384
k d4 13nu TO TO 99.77 98.70 TO TO TO TO
k dum 19nu TO TO 37.59 32.27 TO TO MO 140.88
k ph 14pu 963.7 1001 1005 1014 MO MO MO TO
k tp4 21nu 15.84 15.31 5.32 0.32 TO 0.54 MO TO
k branch 21nu 0.39 0.40 0.40 0.39 TO 2.4 18.2 19.2
k path 21pu 1.7 1.76 0.23 1.78 MO 25.63 7.30 9.0
k poly 16pu MO MO MO 0.61 373.4 76.98 MO 2.03
k poly 21ns MO MO TO 325.4 MO MO MO 524.6
BCS4s TO 1.37 TO 0.20 133.8 TO MO 13.8
BCS5s TO TO TO 2.14 MO TO MO 276.2

1All numbers are in second. TO—Time Out; MO—Memory Out
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Conclusion and Future Work

Conclusion

DPLL with local learning is efficient w.r.t. a single node
Global Learning is effective compared to any existing
algorithms
Optimization on difficult problems has no obvious impact to
simple problems
Compatible with lazy unfolding

Future Work

Integration with existing optimization algorithms/techniques
Optimization on learning and forgetting
Application to more expressive DL
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Q & A

Questions?
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