Intelligent Tableaux Algorithm for Descrition Logic Reasoning

Ming Zuo Volker Haarslev

Concordia University, Montreal

September, 2013

Outline

- Motivation
- Related Work
- \mathcal{ALC} DL Syntax and Semantics
- Normalization
- Local Learning and Global Learning
- Forgetting
- Experimental Results
- Future Work

Motivation

- Tremendous amount of theoretical and Implementation work
 - Tableaux, Automata, SMT, Resolution …
 - FACT++, Pellet, RACER, HermiT …
 - Comprehensive sets of optimization algorithms and techniques
- Efficient reasoning is the gap
 - Two sources of complexity: OR-Branching, AND-Branching
 - An active area of research
- *ALC* is the expressive DL with the simplest syntax which well addresses the two sources of complexity

- Tableaux Based Algorithms
 - De-facto standard algorithm
 - Simple problems optimal and difficult problems suboptimal
- Tableaux with global cache
 - Simple problem suboptimal and difficult problem optimal
- Automata based algorithm
 - EXPTime, EXPSpace
- SMT based solution
 - Early stage in DL

ALC DL Syntax and Semantics

- Attributive Concept Language with Complements
 - Signature $\Sigma = (\mathcal{N}_R, \mathcal{N}_C, \mathcal{N}_I)$
 - Concepts $C, D \coloneqq \top \mid \bot \mid A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \forall R.C \mid \exists R.C$
- Key Definitions
 - Atomic concept, Atomic literal, Modal Atomic Concept
 - Axiom $(C \subseteq D, C \equiv D)$ and TBox denoted as \mathcal{T}
 - Assertion (a : C, R(a, b)) and ABox denoted as A
 - A Knowledge Base(KB) is a tuple $\mathcal{K} = \{\mathcal{A}, \mathcal{T}\}$
- Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ where $\Delta^{\mathcal{I}}$ is a non-empty set and \mathcal{I} is a mapping $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $d^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
- An interpretation \mathcal{I} is called a model of \mathcal{K} if it satisfies every assertions in \mathcal{A} and validates every axiom in \mathcal{T} .
- \mathcal{K} is satisfiable if it has at least one model.
- All DL reasoning problems P-reducable to \mathcal{K} SAT problem.

Normalization

Description Logic Normal Form (DLNF)

- $d: \bigsqcup_{i=1}^{i} A_i$
- $A \subseteq \bigsqcup_{i=1}^{i} B_{i}$
- $A_1 \subseteq \exists R.B$
- $A_2 \subseteq \forall R.B$

where *d* is an individual and A_i, B_i are atomic literals. A_1, A_2 are called prefixes.

Proposition

For every KB \mathcal{K} , one can compute in linear time a KB \mathcal{K}' in DLNF such that \mathcal{K} is satisfiable iff \mathcal{K}' is satisfiable (equi-satisfiable)

Normalization (Continued)

• De Morgan's Laws

• • • •

- Simplification Rules
 - $C \sqcap C = C$
 - $\neg \neg C = C \cdots$
- Normalization Rules
 - $a: C \Rightarrow \{a: X, X \subseteq C\}$ where $X \notin \mathcal{N}_C$ of \mathcal{K}'
 - $A \subseteq C \sqcup D \Rightarrow \{A \subseteq X \sqcup Y, X \subseteq C, Y \subseteq D\}$ where $X, Y \notin \mathcal{N}_C$ of \mathcal{K}'

イロト 不得 とくほと くほとう ほ

- $A \sqsubseteq \exists R.C \Rightarrow \{A \sqsubseteq \exists R.X, X \sqsubseteq C\}$ where $X \notin \mathcal{N}_C$ of \mathcal{K}'
- $A \sqsubseteq \forall R.C \Rightarrow \{A \sqsubseteq \forall R.X, X \sqsubseteq C\}$ where $X \notin \mathcal{N}_C$ of \mathcal{K}'
- $A \sqsubseteq C \sqcap D \Rightarrow \{A \sqsubseteq C, A \sqsubseteq D\}$

Local Learning

- OR-branching in DL (Tableau ⊔-rule/β-rule): ^{a:}(C⊔D)∈K K∪(a:C) | K∪(a:D)
 - Mathematically correct
 - Workable for general KB
 - Practically inefficient
 - \mathcal{K} is copied to every branch
 - Worst case up to $O(n^{2^n})$ while the \sqcup is NP per se.
- Solution in the literature
 - Open research topic
 - DPLL with conflict-driven learning with high-performance in reality $O(2^n)$
 - $\bullet\,$ No state-of-the-art DL reasoners deal with \sqcup efficiently so far

Local Learning (Continued)

- Our solution
 - Group all assertions in a DLNF \mathcal{K} by individual (Node)
 - Satisfiability of each node becomes SAT w.r.t. a CNF
 - DPLL on CNF with conflict-driven learning (local learning), two-watched-literals etc.
 - A node model in the form of $d : \{B_1, B_2, ..., B_i\}$ where B_i is an atomic literal
- Local learning is out of the scope in DL research

Example

 $A, B, C, D, E, X \in \mathcal{N}_C$ and $R \in \mathcal{N}_R$ of \mathcal{K}

- 🚺 a:X
- $B \sqsubseteq A$
- $C \sqsubseteq A \sqcup B$
- $A \sqsubseteq D$
- A ⊑ E
- $D \subseteq \exists R.X$
- $E \subseteq \forall R. \neg X$

 $T \sqsubseteq A \sqcup B \sqcup C$

Proof:

Example(Continued)

	Node	Model		
	$b: \left(\begin{array}{c} X \\ \neg X \\ A \sqcup B \sqcup C \end{array}\right)$	(0:)	Node	Model
K = K	CU{⊺⊑¬D⊔¬E}		$a: \begin{pmatrix} X \\ A \sqcup B \sqcup C \\ \neg D \sqcup \neg E \end{pmatrix}$	$(0:X,\neg A)$
Nod	e ,	Model		
a :	$ \begin{array}{c} X \\ A \sqcup B \sqcup C \\ \neg D \sqcup \neg E \\ D, E \\ \forall R. \neg X, \exists R. X \end{array} \right) $	$\left(\begin{array}{c} 0: X\\ 1: A, D, E,\\ \forall R. \neg X, \exists R. X\end{array}\right)$)	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

Global Learning

۲

C is a universal label of node *b*; empty label node is called root.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Global Learning (Continued)

Interesting facts:

- All nodes have to be satisifiable at the same time if \mathcal{K} is satisfiable (AND-node).
- Due to unfolding-rule, node content is dynamic at run-time, but satisfiability is determined by its label set.
- Label set is uniquely determined by its prefix set which is a subset of its parent's node model.
- Globle learning
 - UNSAT-learning
 - Unknown-learning (remembering)
 - SAT-learning (remembering)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Forgetting

- Forgetting proposition. Let \mathcal{K} a KB and ϕ a formula, and $\mathcal{K}' = \mathcal{K} \setminus \{\phi\}$. If $\mathcal{K}' \models \phi$, then \mathcal{K} and \mathcal{K}' are equisatisfiable.
- Forgetting ensures practical tractability.
- Methods of forgetting
 - FIFO
 - Heuristic
 - Advanced algorithms

Experimental Results¹

								_
	L-N	L-S	L-U	LIGHT	HermiT	Pellet	Fact++	Racer
galen2s	0.16	0.15	0.16	0.15	1.3	1.4	0.46	1.9
JNH16u	0.07	0.06	0.06	0.07	237.4	452.3	MO	15384
k_d4_13nu	TO	TO	99.77	98.70	TO	TO	TO	ТО
k_dum_19nu	TO	TO	37.59	32.27	TO	TO	MO	140.88
k_ph_14pu	963.7	1001	1005	1014	MO	MO	MO	ТО
k_tp4_21nu	15.84	15.31	5.32	0.32	ТО	0.54	MO	ТО
k_branch_21nu	0.39	0.40	0.40	0.39	ТО	2.4	18.2	19.2
k_path_21pu	1.7	1.76	0.23	1.78	MO	25.63	7.30	9.0
k_poly_16pu	MO	MO	MO	0.61	373.4	76.98	MO	2.03
k_poly_21ns	MO	MO	TO	325.4	MO	MO	MO	524.6
BCS4s	TO	1.37	TO	0.20	133.8	TO	MO	13.8
BCS5s	TO	TO	TO	2.14	MO	TO	MO	276.2

¹All numbers are in second. TO—Time Out; MO—Memory Out $\leftarrow \blacksquare$ \Rightarrow $\Box = \bigcirc \lhd \bigcirc \lhd \bigcirc$

Conclusion and Future Work

Conclusion

- DPLL with local learning is efficient w.r.t. a single node
- Global Learning is effective compared to any existing algorithms
- Optimization on difficult problems has no obvious impact to simple problems
- Compatible with lazy unfolding
- Future Work
 - Integration with existing optimization algorithms/techniques

- Optimization on learning and forgetting
- Application to more expressive DL

• Questions?

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへ⊙