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Introduction

» Real Temporal Logic: Simple, Expressively complete re:
First Order Monadic Logic of Order.

» French et al. [2012] proposed a language of model
expressions, based on pioneering work of Lauchli and
Leonard [1966], Burgess and Gurevich [1985], Reynolds
[2001, 2010]

» Complete: Every satisfiable formula has a model in this
language.

» Have complete and finite representations of models for
Real Temporal Logic formulas

» Obvious question: Can we Model Check?

» Yes, and generalise to General Linear Time

» And we have an efficient implementation
[M¢Cabe-Dansted, 2012]



Compositional Model Expressions

Model Expressions are an abstract syntax to define models
using the following set of primitive operators based on the four

operations:

<_
Tom a|MI+T|T|T | T, .. )

where a € ¥ = 2! so the letter indicates the atoms true at a
point. We refer to these operators, respectively, as a letter,
the empty order, concatenation, lead, trail, and shuffle.

» How does this relate to a model like (Q, <, g)?




Correspondence

We define whether a model expression corresponds to a model
recursively as follows: (or more formally in paper)

» A letter a corresponds to a single point at which the set
of atoms satisfied is a.

» The empty order \ corresponds to an empty
(psuedo-frame)

» The concatenation Z + J corresponds to a model where
first Z, then 7.

“— e
» The lead Z corresponds to an infinite number of repeats
of Z, forming a limit point on the left.

> The trail 7 corresponds to an infinite number of repeats
of Z, forming a limit point on the right.

» A shuffle (Zo,...,Z,) corresponds to a dense mixture of
To,.. .. I,



Lead: Z = ?
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Shuffle T = (T4, ..., T,)

7 =(




Language of Until and Since

» The Language of Until and Since
¢pu=pl=o|dAd|U(p,a) |S(pq)

» In RTL:

b S(b, 5)

» The US/L Logic like RTL, but models can be over any
linear flow of time (not just Reals, e.g. Integers).



An Example: Zeno

If we walk into a wall: we will halve the distance; whenever we
have halved the distance, we will halve the distance again, but
only after a period of not halving the distance; once we have
reached the wall we will not halve the distance anymore; and
finally, we reach the wall. Where h represents “we have halved
the distance” and r represents “we have reached the wall’. The
US/L formula for the intended expression is:

FhA G (h— U(h,~h))AG(r— G-h)AFr.

We see that this does not cause a contradiction as this
formula is satisfied at the leftmost point x of any structure T

corresponding to {h} + 0 + {r}.



An Example: Detector

At some sporting event, it may be that a player is awarded a
point if the ball bounces twice. An automated system may
detect such bounces and make a ruling as to whether to award
a point. The system may poll a given sensor, to determine
whether a bounce has occurred since the previous polling
event. If the system detects two bounces it awards a point.
Where b indicates that a bounce has just occurred, s indicates
that system has just checked its sensor, and e indicates the
end of the round.

The player deserves a point precisely if 6 = F(b A F(b A Fe))
holds while the system awards a point precisely where the
formula 6s = F(bA F(s A F(b A F(s A Fe)))) holds. The
result is correct if 6 <+ 6, holds. We can verify the result is
correct for a run of the system against the environment

described by the ME:
(s} + {b} + {s} + {s} + {b} + {s} + (b + {e}



An Example: Fractal Signal

T T
fractal signal

Strength
OCO00O0O0O000O0
OFNWARUONOWOR

{
L J L\ |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

Let p represent an increment, g describe a decrement, and r
represent a constant signal, then we can model this signal

e () + (p) + (q) + ()

Some properties of this signal can be represented in L(U, S),
for example we can reach a region of increment directly from a
constant region so r A U (p, r V p) is satisfied within the
model. However, we cannot reach a region of increment
directly from a region of decrement, so g A U (p, q) is satisfied
nowhere.



Model Checking

Definition

We define the model checking problem as follows: given an
ME Z and formula ¢, determine whether there exists a
structure T = (T, <, h) corresponded to by Z and point

x € T such that T, x E ¢.

A traditional approach to model checking is to add subformula

as atoms

Definition

The model checking procedure takes as input an ME Z and
formula ¢. We enumerate the subformulas ¢4, ..., ¢, of ¢

from shortest to longest (so ¢, = ¢), let Zy = Z, and

Z; = add_atom,, (Z;—1) for each i € {0,...,n}. Finally, we
return “true” if there is a letter a in Z, such that ¢ € a, and
“false” otherwise.



Adding A and — as atoms

Adding PC formulas as atoms is trivial consider:

N z
1| (anb)A—c {a, b} + {c}
2 (aAb)Ap-c {a,b,p-c} + {c}
3| Panb A Pp-c {a, b, panb, p-c} +{c}
4 P(anb)A—c {a, b, Panb; P-c, p(a/\b)/\—\c} + {C}




Pre(satisfaction)

“pre (IC, )" is true if U(p, q) is true before K where
» KCis an ME
» And - means “U(p, q)" is true after K
Definition
We define a function “pre” from Booleans and MEs to
Booleans such that: for any Boolean - and pair of MEs Z, J

1. pre(a,4)=pecaV(dAq € a)

2. pre(Z+ J,H) =pre(Z,pre(J,))

3. pre (?,4) =pre(Z,d) =pre(Z,pre(Z,))
4. pre(J,H)=(HVII e L(T) st. pel)AVl e

L(TJ), q €I, where J is of the form T or (...)and
L(J) is the set of letters within 7.



Adding Until as an Atom

Definition

We define add_atomy, ., (Z) as t(Z, L): where tis a
function that takes an ME and a Boolean as input, and
outputs an ME as follows: for any Boolean , pair of MEs
Z,J and sequence of MEs 7, ...,Z,

a if 4= _1
Lo t(a )= {aU{U(p,q)} if =T
2. t(Z+J,H)=t(Z,pre(T,) +t(J,H)
3t (% 4) — +(Z, pre (Z,4)) + t (Z,)

4. t(?,—i) — t(Z, pre (Z, )

5 t(K,4) = (t(Zo,T),...,t(Zn,)) where
K= (Zy,...,Z,) and 4= pre (K, )



Complexity (1)

v

Adding one Until: <f ~ %0 + I
Adding n Untils: Z ~ Zo+Zy +--- + 1,
With m nested leads, has ~ (n+ 1)™ length

o (I¢l")

Polynomial in Length of the Formula

v

v

v

v



Complexity (2)

Traditionally we want model checking to be polynomial in the
Model

» Represent MEs as Directed Acyclic Graphs (1 node per
unique subME)

Each unique Z becomes t(Z, T) or t (Z, 1)
Adding U as atom deubles triples # unique nodes

— T
> E.g. {p} becomes {p, U (p,p)} + {p}

IZ| 31 nodes (or |Z| |¢] 21

Linear in Length of ME

v

v

v

v



Benchmark: Random Square Problem(s)
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Ongoing Work

Every RTL model M of an formula ¢ is also a US/L model.
» Can model check Real MEs using same model checker
» Minor Detail: MEs correspond to countable structures

Expressive completeness re Linear flows requires Stavi
Until /Since

» Can translate into RTL using special atom c¢ for gaps.

Can translate Metrics with error into RTL.



Conclusions

» ME provide models for all RTL formulas.
» Found efficient model checker:

» Polynomial in Length of Formula

Linear in length of ME

Moderate /n growth on random formulas

But PSPACE-Complete in general (Present at TIME
2013)

v

v

v

» Extensions for Metrics, Stavi etc. inprogress.
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NP-Hardness (PSPACE-Hardness)

We can show NP-Hardness (extend to PSPACE-hardness in
Paper)

1. Ty = po + o

2.1 = m + qi
SAT problem: Is ¢ = (r A ry) V —rg satisfiable

» replace r; with r/ = U (q;, —p;)

» ie. ¢ = (U(q1,—p1) A U(q0,7po)) V —U (g0, ~po)
» if n atoms in ¢: model check Z, against ¢’



Example

v

Model check against Z; (or Z,_; if n atoms in ¢)
%
y=p+bo+do+a

Ly ~ p1 + iPo} +{po, U(qo, po)} + g0 + ¢

I ~ pr+ m + {po, U(q0, =po)} + qo +
{po, U(qr, 1)} +{po, U(qo. —po), U(q1, —p1)} + a1

v

v

v




PSPACE

We use a recursively defined function 2. Informally,
A(Z, P, ) = (©,V) means
» if we have an interval T, that corresponds to Z

» O is the set of formulas in U presatisfied immediately
after Vin T
» we are only interested in ¢ and subformulas of ¢,

» Then it must be the case that the set of formulas
satisfied within Ty is ©,

» and the set formulas in U presatisfied immediately before
VinTis V.

» The formula ¢ indicates that we are only interested in
whether ¢ € © and so we can limit ourselves to
subformulas of ¢ and their negations. The algorithm
works by generating increasing accurate approximations
to (©, V) that are accurate up to some subformula ¢;.



Excerpt of Recursive Function 2l

Definition
Let K be an ME, and ® be a set of formulae. We define 2 (K, ®, ¢) to be the pair of
sets of formulas (©, V) as follows.
We consider various possible forms of /. The first case we consider is a letter. In the
following construction we build increasingly accurate approximations of (©, V): for
each j we have ©; ~<; © and V; =; V.
Case 0. K = ). Since K corresponds to the empty pseudo frame it cannot satisfy any
formula so we let © = (), likewise it cannot affect pre or postsatisfaction so W = o.
Case 1. K is a letter:
> Qg=0 Vg=0
» for each i:
> We let ©; be a set such that ©; \ {¢;} = ©;_1 \ {¢;} and: if ¢; is of the
form —a then ¢; € ©; iff a ¢ ©;_1; if ¢; is of the form o A 3 then
¢; € ©; iff a € ©;_1 AB € Oj_y; if ¢p; is an atom then ¢; € O; iff
¢; € K; if ¢; e UUS then ¢; € ©; iff ¢ € &.
> ¢; € Viff ¢; is of the form U («, B8) or S(a, B) and either a € ©; or
(B €Oi) A (i € ).
> We let © be the minimal expansion of ©, such that for each ¢;, we have
¢;i € O iff ¢; € ©p and —¢; € O iff ¢; ¢ ©n. We add the negations into
© so that when we have an ME with multiple letters we can express “a
occurs everywhere” as —a ¢ ©.



