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Introduction

I Real Temporal Logic: Simple, Expressively complete re:
First Order Monadic Logic of Order.

I French et al. [2012] proposed a language of model
expressions, based on pioneering work of Läuchli and
Leonard [1966], Burgess and Gurevich [1985], Reynolds
[2001, 2010]

I Complete: Every satis�able formula has a model in this
language.

I Have complete and �nite representations of models for
Real Temporal Logic formulas

I Obvious question: Can we Model Check?
I Yes, and generalise to General Linear Time
I And we have an e�cient implementation

[McCabe-Dansted, 2012]



Compositional Model Expressions

Model Expressions are an abstract syntax to de�ne models
using the following set of primitive operators based on the four
operations:

I ::= a | λ | I + J | ←−I | −→I | 〈I0, . . . , In〉

where a ∈ Σ = 2L so the letter indicates the atoms true at a
point. We refer to these operators, respectively, as a letter,
the empty order, concatenation, lead, trail, and shu�e.

I How does this relate to a model like (Q, <, g)?



Correspondence

We de�ne whether a model expression corresponds to a model
recursively as follows: (or more formally in paper)

I A letter a corresponds to a single point at which the set
of atoms satis�ed is a.

I The empty order λ corresponds to an empty
(psuedo-frame)

I The concatenation I + J corresponds to a model where
�rst I, then J .

I The lead
←−I corresponds to an in�nite number of repeats

of I, forming a limit point on the left.

I The trail
−→I corresponds to an in�nite number of repeats

of I, forming a limit point on the right.

I A shu�e 〈I0, . . . , In〉 corresponds to a dense mixture of
I0, . . . , In.



Lead: I =
←−J

Here is a lead
←−J .

←−J :
. . . JJJ

1

A trail
←−Jis just the mirror image of

←−J .

←−J: ...J J J

1



Shu�e I = 〈I1, . . . , In〉

I I1 I I2
. . .

I In

I I1 I I2
. . .

I In

...
...

I ≡
I

I eeeeeeeee

eeeeeeeee



Language of Until and Since

I The Language of Until and Since

φ ::= p | ¬φ | φ ∧ φ | U (p, q) | S (p, q)

I In RTL:

S(b, g)

bU(b, g)

b

I The US/L Logic like RTL, but models can be over any
linear �ow of time (not just Reals, e.g. Integers).



An Example: Zeno

If we walk into a wall: we will halve the distance; whenever we
have halved the distance, we will halve the distance again, but
only after a period of not halving the distance; once we have
reached the wall we will not halve the distance anymore; and
�nally, we reach the wall. Where h represents �we have halved
the distance� and r represents �we have reached the wall�. The
US/L formula for the intended expression is:

Fh ∧ G (h→ U (h,¬h)) ∧ G (r → G¬h) ∧ Fr .

We see that this does not cause a contradiction as this
formula is satis�ed at the leftmost point x of any structure T

corresponding to
−−−−−→{h}+ ∅+ {r}.



An Example: Detector
At some sporting event, it may be that a player is awarded a
point if the ball bounces twice. An automated system may
detect such bounces and make a ruling as to whether to award
a point. The system may poll a given sensor, to determine
whether a bounce has occurred since the previous polling
event. If the system detects two bounces it awards a point.
Where b indicates that a bounce has just occurred, s indicates
that system has just checked its sensor, and e indicates the
end of the round.
The player deserves a point precisely if θ = F (b ∧ F (b ∧ Fe))
holds while the system awards a point precisely where the
formula θs = F (b ∧ F (s ∧ F (b ∧ F (s ∧ Fe)))) holds. The
result is correct if θ ↔ θs holds. We can verify the result is
correct for a run of the system against the environment
described by the ME:

{s}+ {b}+ {s}+ {s}+ {b}+ {s}+
−→{b}+ {e}



An Example: Fractal Signal
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Let p represent an increment, q describe a decrement, and r

represent a constant signal, then we can model this signal
using:

〈〈r〉+ 〈p〉+ 〈q〉+ 〈r〉〉
Some properties of this signal can be represented in L(U, S),
for example we can reach a region of increment directly from a
constant region so r ∧ U (p, r ∨ p) is satis�ed within the
model. However, we cannot reach a region of increment
directly from a region of decrement, so q ∧ U (p, q) is satis�ed
nowhere.



Model Checking

De�nition

We de�ne the model checking problem as follows: given an
ME I and formula φ, determine whether there exists a
structure T = (T , <, h) corresponded to by I and point
x ∈ T such that T, x � φ.

A traditional approach to model checking is to add subformula
as atoms

De�nition

The model checking procedure takes as input an ME I and
formula φ. We enumerate the subformulas φ1, . . . , φn of φ
from shortest to longest (so φn = φ), let I0 = I, and
Ii = add_atomφi

(Ii−1) for each i ∈ {0, . . . , n}. Finally, we
return �true� if there is a letter a in In such that φ ∈ a, and
�false� otherwise.



Adding ∧ and ¬ as atoms

Adding PC formulas as atoms is trivial consider:

φ I
1 (a ∧ b) ∧ ¬c {a, b}+ {c}
2 (a ∧ b) ∧ p¬c {a, b, p¬c}+ {c}
3 pa∧b ∧ p¬c {a, b, pa∧b, p¬c}+ {c}
4 p(a∧b)∧¬c {a, b, pa∧b, p¬c , p(a∧b)∧¬c}+ {c}



Pre(satisfaction)

�pre (K,a)� is true if U(p, q) is true before K where

I K is an ME

I And a means �U(p, q)� is true after K

De�nition

We de�ne a function �pre� from Booleans and MEs to
Booleans such that: for any Boolean a and pair of MEs I,J

1. pre (a,a) = p ∈ a ∨ (a ∧q ∈ a)

2. pre (I + J ,a) = pre (I, pre (J ,a))

3. pre
(−→I ,a) = pre (I,a) = pre (I, pre (I,a))

4. pre (J ,a) = (a ∨∃l ∈ L (J ) s.t. p ∈ l) ∧ ∀l ∈
L (J ) , q ∈ l ; where J is of the form

←−I or 〈. . .〉 and
L (J ) is the set of letters within J .



Adding Until as an Atom

De�nition

We de�ne add_atomU(p,q) (I) as t (I,⊥): where t is a
function that takes an ME and a Boolean as input, and
outputs an ME as follows: for any Boolean a, pair of MEs
I,J and sequence of MEs I0, . . . , In

1. t (a,a) =

{
a if a= ⊥
a ∪ {U(p, q)} if a= >

2. t (I + J ,a) = t(I, pre (J ,a)) + t (J ,a)

3. t
(←−I ,a) =

←−−−−−−−−−−
t(I, pre (I,a)) + t (I,a)

4. t
(−→I ,a) =

−−−−−−−−−−→
t(I, pre (I,a))

5. t (K,a) = 〈t (I0,a′) , . . . , t (In,a′)〉 where
K = 〈I0, . . . , In〉 and a′= pre (K,a)



Complexity (1)

I Adding one Until:
←−I  ←−I0 + I1

I Adding n Untils:
←−I  ←−I0 + I1 + · · ·+ In

I With m nested leads, has ≈ (n + 1)m length

I O
(
|φ||I|

)
I Polynomial in Length of the Formula



Complexity (2)

Traditionally we want model checking to be polynomial in the
Model

I Represent MEs as Directed Acyclic Graphs (1 node per
unique subME)

I Each unique I becomes t (I,>) or t (I,⊥)

I Adding U as atom doubles triples # unique nodes

I E.g.
←−{p} becomes

←−−−−−−−−{p,U (p, p)}+ {p}
I |I| 3|φ| nodes (or |I| |φ| 2|φ|)
I Linear in Length of ME



Benchmark: Random Square Problem(s)
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Ongoing Work

Every RTL model M of an formula φ is also a US/L model.

I Can model check Real MEs using same model checker

I Minor Detail: MEs correspond to countable structures

Expressive completeness re Linear �ows requires Stavi
Until/Since

I Can translate into RTL using special atom c for gaps.

Can translate Metrics with error into RTL.



Conclusions

I ME provide models for all RTL formulas.

I Found e�cient model checker:

I Polynomial in Length of Formula
I Linear in length of ME
I Moderate

√
n growth on random formulas

I But PSPACE-Complete in general (Present at TIME
2013)

I Extensions for Metrics, Stavi etc. inprogress.
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NP-Hardness (PSPACE-Hardness)

We can show NP-Hardness (extend to PSPACE-hardness in
Paper)

1. I1 =←−p0 + q0

2. Ii =
←−−−−−
pi + Ii−1 + qi

SAT problem: Is φ = (r1 ∧ r0) ∨ ¬r0 satis�able

I replace ri with r ′i = U (qi ,¬pi)
I i.e. φ′ = (U (q1,¬p1) ∧ U (q0,¬p0)) ∨ ¬U (q0,¬p0)

I if n atoms in φ: model check In against φ′



Example

I Model check against I1 (or In−1 if n atoms in φ)

I I2 =
←−−−−−−−−
p1 +←−p0 + q0 + q1

I I2  
←−−−−−−−−−−−−−−−−−−−−−−−−
p1 +

←−−{p0}+ {p0,U(q0,¬p0)}+ q0 + q1

I I2  
←−−−−−−−−−−−−−−−−−−−−−−−−
p1 +

←−−{p0}+ {p0,U(q0,¬p0)}+ q0 +←−−−−−−−−−−−{p0,U(q1,¬p1)}+ {p0,U(q0,¬p0),U(q1,¬p1)}+ q1



PSPACE
We use a recursively de�ned function A. Informally,
A (I,Φ, φ) = (Θ,Ψ) means

I if we have an interval TV that corresponds to I
I Φ is the set of formulas in U presatis�ed immediately

after V in T
I we are only interested in φ and subformulas of φ,

I Then it must be the case that the set of formulas
satis�ed within TV is Θ,

I and the set formulas in U presatis�ed immediately before
V in T is Ψ.

I The formula φ indicates that we are only interested in
whether φ ∈ Θ and so we can limit ourselves to
subformulas of φ and their negations. The algorithm
works by generating increasing accurate approximations
to (Θ,Ψ) that are accurate up to some subformula φj .



Excerpt of Recursive Function A
De�nition
Let K be an ME, and Φ be a set of formulae. We de�ne A (K,Φ, φ) to be the pair of
sets of formulas (Θ,Ψ) as follows.
We consider various possible forms of K. The �rst case we consider is a letter. In the
following construction we build increasingly accurate approximations of (Θ,Ψ): for
each j we have Θj ≈≤j Θ and Ψj ≈≤j Ψ.
Case 0. K = λ. Since K corresponds to the empty pseudo frame it cannot satisfy any
formula so we let Θ = ∅, likewise it cannot a�ect pre or postsatisfaction so Ψ = Φ.

Case 1. K is a letter:

I Θ0 = ∅, Ψ0 = ∅
I for each i :

I We let Θi be a set such that Θi \ {φi} = Θi−1 \ {φi} and: if φi is of the
form ¬α then φi ∈ Θi i� α /∈ Θi−1; if φi is of the form α ∧ β then
φi ∈ Θi i� α ∈ Θi−1 ∧ β ∈ Θi−1; if φi is an atom then φi ∈ Θi i�
φi ∈ K; if φi ∈ U ∪ S then φi ∈ Θi i� φ ∈ Φ.

I φi ∈ Ψ i� φi is of the form U (α, β) or S(α, β) and either α ∈ Θi or
(β ∈ Θi ) ∧ (φi ∈ Φ).

I We let Θ be the minimal expansion of Θn such that for each φi , we have
φi ∈ Θ i� φi ∈ Θn and ¬φi ∈ Θ i� φi /∈ Θn. We add the negations into
Θ so that when we have an ME with multiple letters we can express �α
occurs everywhere� as ¬α /∈ Θ.

. . .


