Model Checking for Compositional Models of General Linear Time

Tim French, John McCabe-Dansted, Mark Reynolds

University of Western Australia

17th September 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction

- Real Temporal Lo⁻⁻ic: Simple, Expressively complete re: First Order Monadic Lo⁻⁻ic of Order.
- French et al. [2012] proposed a lan⁻⁻ua⁻⁻e of model expressions, based on pioneerin⁻⁻ work of Läuchli and Leonard [1966], Bur⁻⁻ess and Gurevich [1985], Reynolds [2001, 2010]
 - Complete: Every satisfiable formula has a model in this language.

- Have complete and finite representations of models for Real Temporal Lo⁻⁻ic formulas
 - Obvious question: Can we Model Check?
 - Yes, and generalise to General Linear Time
 - And we have an efficient implementation [M^cCabe-Dansted, 2012]

Compositional Model Expressions

<u>Model Expressions</u> are an abstract syntax to define models usin⁻⁻ the followin⁻⁻ set of primitive operators based on the four operations:

$$\mathcal{I} ::= a \mid \lambda \mid \mathcal{I} + \mathcal{J} \mid \overleftarrow{\mathcal{I}} \mid \overrightarrow{\mathcal{I}} \mid \langle \mathcal{I}_0, \dots, \mathcal{I}_n \rangle$$

where $a \in \Sigma = 2^{L}$ so the letter indicates the atoms true at a point. We refer to these operators, respectively, as <u>a letter</u>, the empty order, concatenation, lead, trail, and shuffle.

• How does this relate to a model like $(\mathbb{Q}, <, g)$?

Correspondence

We define whether a model expression corresponds to a model recursively as follows: (or more formally in paper)

- A letter a corresponds to a sin⁻⁻le point at which the set of atoms satisfied is a.
- ► The empty order λ corresponds to an empty (psuedo-frame)
- ► The concatenation *I* + *J* corresponds to a model where first *I*, then *J*.
- The lead *T* corresponds to an infinite number of repeats of *I*, formin⁻⁻ a limit point on the left.
- ► The trail *I* corresponds to an infinite number of repeats of *I*, formin⁻⁻ a limit point on the ri⁻⁻ht.
- A shuffle ⟨I₀,...,I_n⟩ corresponds to a dense mixture of I₀,...,I_n.

Lead: $\mathcal{I} = \overleftarrow{\mathcal{J}}$

Here is a lead $\overleftarrow{\mathcal{J}}$.

A trail $\overrightarrow{\mathcal{V}}$ is just the mirror image of $\overleftarrow{\mathcal{J}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shuffle $\mathcal{I} = \langle \mathcal{I}_1, \ldots, \mathcal{I}_n \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Language of Until and Since

The Lan-uare of Until and Since

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid U(p,q) \mid S(p,q)$$

 The US/L Lotic like RTL, but models can be over any linear flow of time (not just Reals, e.f. Interes).

An Example: Zeno

If we walk into a wall: we will halve the distance; whenever we have halved the distance, we will halve the distance a ain, but only after a period of not halvin the distance; once we have reached the wall we will not halve the distance anymore; and finally, we reach the wall. Where h represents "we have halved the distance" and r represents "we have reached the wall". The US/L formula for the intended expression is:

$$Fh \wedge G (h
ightarrow U (h, \neg h)) \wedge G (r
ightarrow G \neg h) \wedge Fr$$
.

We see that this does not cause a contradiction as this formula is satisfied at the leftmost point x of any structure T correspondint to $\overline{\{h\} + \emptyset} + \{r\}$.

An Example: Detector

At some sportin – event, it may be that a player is awarded a point if the ball bounces twice. An automated system may detect such bounces and make a rulin – as to whether to award a point. The system may poll a – iven sensor, to determine whether a bounce has occurred since the previous pollin – event. If the system detects two bounces it awards a point. Where b indicates that a bounce has just occurred, s indicates that system has just checked its sensor, and e indicates the end of the round.

The player deserves a point precisely if $\theta = F(b \wedge F(b \wedge Fe))$ holds while the system awards a point precisely where the formula $\theta_s = F(b \wedge F(s \wedge F(b \wedge F(s \wedge Fe))))$ holds. The result is correct if $\theta \leftrightarrow \theta_s$ holds. We can verify the result is correct for a run of the system a ainst the environment described by the ME:

$$\{s\} + \{b\} + \{s\} + \{s\} + \{b\} + \{s\} + \{c\} + \{e\}$$

An Example: Fractal Signal

Let *p* represent an increment, *q* describe a decrement, and *r* represent a constant sinnal, then we can model this sinnal usinn:

$$\langle \langle r \rangle + \langle p \rangle + \langle q \rangle + \langle r \rangle \rangle$$

Some properties of this simal can be represented in L(U, S), for example we can reach a remion of increment directly from a constant remion so $r \wedge U(p, r \vee p)$ is satisfied within the model. However, we cannot reach a remion of increment directly from a remion of decrement, so $q \wedge U(p,q)$ is satisfied nowhere.

Model Checking

Definition

We define the model checkin problem as follows: "iven an ME \mathcal{I} and formula ϕ , determine whether there exists a structure $\mathbf{T} = (\mathcal{T}, <, h)$ corresponded to by \mathcal{I} and point $x \in \mathcal{T}$ such that $\mathbf{T}, x \models \phi$.

A traditional approach to model checkin⁻⁻⁻ is to add subformula as atoms

Definition

The model checkin procedure takes as input an ME \mathcal{I} and formula ϕ . We enumerate the subformulas ϕ_1, \ldots, ϕ_n of ϕ from shortest to lonest (so $\phi_n = \phi$), let $\mathcal{I}_0 = \mathcal{I}$, and $\mathcal{I}_i = \operatorname{add_atom}_i (\mathcal{I}_{i-1})$ for each $i \in \{0, \ldots, n\}$. Finally, we return "true" if there is a letter a in \mathcal{I}_n such that $\phi \in a$, and "false" otherwise.

Adding \land and \neg as atoms

Addin⁻⁻ PC formulas as atoms is trivial consider:

	ϕ	I
1	$(a \wedge b) \wedge \neg c$	$\{a,b\} + \{c\}$
2	$(a \wedge b) \wedge p_{\neg c}$	$\{a,b,p_{\neg c}\} + \{c\}$
3	$p_{a \wedge b} \wedge p_{ eg c}$	$\{a,b,p_{a\wedge b},p_{\neg c}\}+\{c\}$
4	$p_{(a \wedge b) \wedge \neg c}$	$\{a, b, p_{a \wedge b}, p_{\neg c}, p_{(a \wedge b) \wedge \neg c}\} + \{c\}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Pre(satisfaction)

"pre (\mathcal{K},\dashv) " is true if U(p,q) is true before \mathcal{K} where

- \mathcal{K} is an ME
- ▶ And \dashv means "U(p,q)" is true after \mathcal{K}

Definition

We define a function "pre" from Booleans and MEs to Booleans such that: for any Boolean \dashv and pair of MEs \mathcal{I}, \mathcal{J}

Adding Until as an Atom

Definition

We define add_atom_{U(p;q)} (\mathcal{I}) as t (\mathcal{I}, \perp): where t is a function that takes an ME and a Boolean as input, and outputs an ME as follows: for any Boolean \dashv , pair of MEs \mathcal{I}, \mathcal{J} and sequence of MEs $\mathcal{I}_0, \ldots, \mathcal{I}_n$

1.
$$t(a, \dashv) = \begin{cases} a & \text{if } \dashv = \bot \\ a \cup \{U(p, q)\} & \text{if } \dashv = \top \end{cases}$$

2. $t(\mathcal{I} + \mathcal{J}, \dashv) = t(\mathcal{I}, \text{pre}(\mathcal{J}, \dashv)) + t(\mathcal{J}, \dashv)$
3. $t(\overleftarrow{\mathcal{I}}, \dashv) = \overleftarrow{t(\mathcal{I}, \text{pre}(\mathcal{I}, \dashv))} + t(\mathcal{I}, \dashv)$
4. $t(\overrightarrow{\mathcal{I}}, \dashv) = \overrightarrow{t(\mathcal{I}, \text{pre}(\mathcal{I}, \dashv))}$
5. $t(\mathcal{K}, \dashv) = \langle t(\mathcal{I}_0, \dashv'), \dots, t(\mathcal{I}_n, \dashv') \rangle \text{ where } \mathcal{K} = \langle \mathcal{I}_0, \dots, \mathcal{I}_n \rangle \text{ and } \dashv' = \text{pre}(\mathcal{K}, \dashv)$

うして ふゆう ふほう ふほう うらつ

Complexity (1)

- Addin one Until: $\overleftarrow{\mathcal{I}} \rightsquigarrow \overleftarrow{\mathcal{I}_0} + \mathcal{I}_1$
- Addin \overline{n} Untils: $\overleftarrow{\mathcal{I}} \rightsquigarrow \overleftarrow{\mathcal{I}}_0 + \mathcal{I}_1 + \cdots + \mathcal{I}_n$
- With *m* nested leads, has $\approx (n+1)^m$ len⁻⁻th
 \$\mathcal{O}\left(|\phi|^{|\mathcal{I}|}
 ight)\$
- Polynomial in Length of the Formula

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Complexity (2)

Traditionally we want model checkin⁻⁻⁻ to be polynomial in the Model

 Represent MEs as Directed Acyclic Graphs (1 node per unique subME)

うして ふゆう ふほう ふほう うらつ

- ▶ Each unique $\mathcal I$ becomes $t(\mathcal I, \top)$ or $t(\mathcal I, \bot)$
- Addin⁻⁻ U as atom doubles triples # unique nodes

• E.g.
$$\{p\}$$
 becomes $\{p, U(p, p)\} + \{p\}$

- $\blacktriangleright |\mathcal{I}| |3^{||} \text{ nodes (or } |\mathcal{I}| |\phi| |2^{||})$
- Linear in Length of ME

Benchmark: Random Square Problem(s)

Plot of "rowth of $|\mathcal{I}_n|/|\mathcal{I}_0|$ vs. \sqrt{n} for $2^{15} \times 2^{15}$ problem Estimated Space: $\approx |\mathcal{I}| |\phi|^{3=2}$ and Time $\approx |\mathcal{I}| |\phi|^{5=2}$

900

э

・ロト ・聞ト ・ヨト ・ヨト

Every RTL model M of an formula ϕ is also a US/L model.

- Can model check Real MEs usin⁻⁻⁻ same model checker
- Minor Detail: MEs correspond to <u>countable</u> structures Expressive completeness re Linear flows requires Stavi Until/Since
- Can translate into RTL usin special atom c for special atom c for

うして ふゆう ふほう ふほう うらつ

Can translate Metrics with error into RTL.

Conclusions

- ME provide models for <u>all</u> RTL formulas.
- Found efficient model checker:
 - Polynomial in Length of Formula
 - Linear in length of ME
 - Moderate \sqrt{n} growth on random formulas
 - But PSPACE-Complete in general (Present at TIME 2013)

うして ふゆう ふほう ふほう うらつ

► Extensions for Metrics, Stavi etc. inprorress.

References

- J. P. Burgess and Y. Gurevich. The decision problem for linear temporal logic. <u>Notre</u> Dame J. Formal Logic, 26(2):115–128, 1985.
- Tim French, John Christopher M^cCabe-Dansted, and Mark Reynolds. Synthesis for temporal logic over the reals. In Thomas Bolander, Torben Braüner, Silvio Ghilardi, and Lawrence S. Moss, editors, <u>Advances in Modal Logic</u>, pages 217–238. College Publications, 2012. ISBN 978-1-84890-068-4.
- H. Läuchli and J. Leonard. On the elementary theory of linear order. <u>Fundamenta</u> Mathematicae, 59:109–116, 1966.
- John Christopher M^cCabe-Dansted. Model checker for general linear time (online applet and data), 2012. http://www.csse.uwa.edu.au/~mark/research/Online/mechecker.html.
- M. Reynolds. The complexity of the temporal logic over the reals. <u>Annals of Pure and</u> Applied Logic, 161(8):1063–1096, 2010. doi: 10.1016/j.apal.2010.01.002.
- Mark Reynolds. Continuous temporal models. In Markus Stumptner, Dan Corbett, and Michael J. Brooks, editors, <u>Australian Joint Conference on Artificial</u> <u>Intelligence</u>, volume 2256 of <u>Lecture Notes in Computer Science</u>, pages 414–425. Springer, 2001. ISBN 3-540-42960-3.

NP-Hardness (PSPACE-Hardness)

We can show NP-Hardness (extend to PSPACE-hardness in Paper)

1.
$$\mathcal{I}_1 = \overleftarrow{p_0} + q_0$$

2. $\mathcal{I}_i = \overleftarrow{p_i + \mathcal{I}_{i-1}} + q_i$

SAT problem: Is $\phi = (r_1 \land r_0) \lor \neg r_0$ satisfiable

- replace r_i with $r'_i = U(q_i, \neg p_i)$
 - ► i.e. $\phi' = (U(q_1, \neg p_1) \land U(q_0, \neg p_0)) \lor \neg U(q_0, \neg p_0)$

ション ふゆ く 山 マ ふ し マ うくの

• if *n* atoms in ϕ : model check \mathcal{I}_n a ainst ϕ'

Example

• Model check a anist
$$\mathcal{I}_1$$
 (or \mathcal{I}_{n-1} if n atoms in ϕ)
• $\mathcal{I}_2 = \overleftarrow{p_1 + \overleftarrow{p_0} + q_0} + q_1$
• $\mathcal{I}_2 \rightsquigarrow \overleftarrow{p_1 + \{\overrightarrow{p_0}\}} + \{p_0, U(q_0, \neg p_0)\} + q_0 + q_1$
• $\underbrace{\mathcal{I}_2 \rightsquigarrow \overrightarrow{p_1 + \{\overrightarrow{p_0}\}}}_{\{p_0, U(q_1, \neg p_1)\}} + \{p_0, U(q_0, \neg p_0), U(q_1, \neg p_1)\} + q_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PSPACE

We use a recursively defined function \mathfrak{A} . Informally, $\mathfrak{A}(\mathcal{I}, \Phi, \phi) = (\Theta, \Psi)$ means

- if we have an interval \mathbf{T}_V that corresponds to \mathcal{I}
 - Φ is the set of formulas in \mathbb{U} presatisfied immediately after V in \mathbf{T}
 - we are only interested in ϕ and subformulas of ϕ ,
- Then it must be the case that the set of formulas satisfied within T_V is Θ,
 - ► and the set formulas in U presatisfied immediately before V in T is Ψ.
 - The formula φ indicates that we are only interested in whether φ ∈ Θ and so we can limit ourselves to subformulas of φ and their negations. The algorithm works by generating increasing accurate approximations to (Θ, Ψ) that are accurate up to some subformula φ_j.

Excerpt of Recursive Function $\mathfrak A$

Definition

Let \mathcal{K} be an ME, and Φ be a set of formulae. We define $\mathfrak{A}(\mathcal{K}; \Phi; -)$ to be the pair of sets of formulas $(\Theta; \Psi)$ as follows.

We consider various possible forms of \mathcal{K} . The first case we consider is a letter. In the following construction we build increasingly accurate approximations of $(\Theta; \Psi)$: for each j we have $\Theta_j \approx_{\leq j} \Theta$ and $\Psi_j \approx_{\leq j} \Psi$.

Case 0. $\mathcal{K} = -Since \mathcal{K}$ corresponds to the empty pseudo frame it cannot satisfy any formula so we let $\Theta = \emptyset$, likewise it cannot affect pre or postsatisfaction so $\Psi = \Phi$.

Case 1 $\,\,\mathcal{K}$ is a letter:

- $\blacktriangleright \quad \Theta_0 = \emptyset, \ \Psi_0 = \emptyset$
- ▶ for each *i*:
 - ▶ We let Θ_i be a set such that $\Theta_i \setminus \{i\} = \Theta_{i-1} \setminus \{i\}$ and: if i is of the form \neg then $i \in \Theta_i$ iff $\in \Theta_{i-1}$; if i is of the form \land then $i \in \Theta_i$ iff $\in \Theta_{i-1} \land \in \Theta_{i-1}$; if i is an atom then $i \in \Theta_i$ iff $i \in \mathcal{K}$; if $i \in \mathbb{U} \cup \mathbb{S}$ then $i \in \Theta_i$ iff $\in \Phi$.
 - $i \in \Psi$ iff i is of the form U(:;) or S(:;) and either $\in \Theta_i$ or $(:\in \Theta_i) \land (:i \in \Phi)$.

. . .

We let Θ be the minimal expansion of Θ_n such that for each *i*, we have *i* ∈ Θ iff *i* ∈ Θ_n and ¬ *i* ∈ Θ iff *i* ∈ Θ_n. We add the negations into Θ so that when we have an ME with multiple letters we can express "occurs everywhere" as ¬ ∈ Θ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()